
Enhanced Floating-Point Multiply-Add with Full
Denormal Support

Jongwook Sohn, David K. Dean, Eric Quintana and Wing Shek Wong
Intel Corporation
Austin, TX, USA

Email: jongwook.sohn, david.k.dean, eric.quintana, wing.shek.wong @intel.com

Abstract—This paper presents an enhanced floating-point
multiply-add (FMA) design for the Intel E-Core processor. FMA
is one of the most widely used operation in many applications. The
proposed FMA is executed in 4 cycles, fully pipelined, handles
SSE/AVX operations for scalar/packed IEEE single and double
precision, and supports all four rounding modes. Also, the pro-
posed FMA fully supports both denormal inputs and underflow
outputs without microcode assistance. To achieve the 4-cycle FMA
with full denormal support, several optimization techniques are
applied: one-way alignment, radix-16 Booth encoding for the mul-
tiplier, merged J-bit correction and aligned significand with the
multiply array, modified leading zero anticipation (LZA) for
masking the underflow, parallel sticky and all-ones detection with
the normalization, and merged two’s complement with the round-
ing logic. As a result, the proposed FMA achieved not only full
denormal support but also about 10 – 30% reduced area and about
10 – 20% reduced latency compared to the traditional FMAs.

Index Terms—Floating-point multiply-add, floating-point
denormal numbers, floating-point arithmetic, high-speed com-
puter arithmetic

I. INTRODUCTION

A steep rise of complex applications such as graphics, ma-
chine learning and artificial intelligence has increased the im-
portance of high-speed computer arithmetic. Those advanced
applications handle a wide and dynamic range of data pro-
cessing, and require floating-point representation, which is
specified in IEEE Standard for floating-point arithmetic [1].
Floating-point multiply-add (FMA) is one of the most fre-
quently used operations in many applications. The FMA con-
sists of complex processes like alignment, normalization and
rounding, which have large latencies, areas, and power require-
ments. Therefore, improving design for the FMA will contrib-
ute to the next generation floating-point arithmetic unit devel-
opment.

This paper presents an enhanced FMA design for the Intel
E-Core processor [2]. The proposed FMA takes three 128-bit
vectors of floating-point numbers and executes two 64-bit FMA
units (i.e., one 64-bit double precision or two 32-bit single pre-
cision in each unit) to compute the result.

 𝑍 = (𝐴 × 𝐵) ± 𝐶 (1)

The proposed FMA is executed in 4 cycles, fully pipelined,
handles SSE/AVX operations for scalar/packed IEEE single and
double precision, and supports all four rounding modes as
specified in the IEEE Standard 754 [1]. Since handling denormal

numbers requires more complex processes, traditional floating-
point units only deal with normal numbers. In this case, a
microcode exception handler is required to compute the
denormal numbers, which takes cycles of additional delay and
significantly degrades the performance. Many researches have
been conducted to develop floating-point units handling
denormal numbers in hardware to avoid the penalty of the
microcode assistance [3] – [5]. The proposed FMA fully
supports denormal numbers with no additional delay making the
microcode assistance unnecessary.

Several optimization techniques are applied to achieve the 4-
cycle FMA with full denormal support:

1) One-way significand alignment is performed with the ad-
dend significand based on the exponent difference in paral-
lel with the multiplier. The aligned significand is inserted
into the multiply array to eliminate the additional CSA at the
end of the multiplier. Also, the sticky logic is performed in
parallel with the alignment, which is used for the rounding
logic.

2) Radix-16 Booth encoding is used for area and power reduc-
tion. Although the radix-16 Booth encoding requires the
pre-computations for multiples, it produces about half the
partial products compared to the radix-4 Booth encoding (14
vs. 27), which reduces two levels of CSAs in the multiply
array. As a result, the radix-16 Booth encoding spends a lot
less area and power with about the same latency compared
to the radix-4 encoding.

3) J-bit is an implicit bit above the MSB of the significand,
which is zero if it is denormal. The addend J-bit is detected
in parallel with the first level of the exponent difference
logic so that there is no delay penalty. The other two oper-
ands, however, need to be directly passed to the multiplier,
so the J-bit detections delay the critical path. To avoid the
delay, the proposed FMA assumes the both J-bits are ones,
then subtracts one J-bit correction line in the multiply array,
which requires a more partial product line and a few bits for
two’s complement, but they are merged with the existing
CSAs and there is no additional delay.

4) Leading zero anticipation (LZA) is applied to speed up the
normalization. The LZA is performed in parallel with the
main adder so that the normalization is performed right after
the main adder. Also, the LZA is modified to handle the un-
derflow when the exponent is negative after the normaliza-
tion. The modified LZA stops the normalization shift if the

exponent becomes zero so that the denormalization shift is
unnecessary, which significantly reduce the latency.

5) The sticky and all-ones detection logic is performed in par-
allel with the normalization to speed up the rounding logic.
The detection logic allows the early roundup decision so that
it is directly passed to the incrementor for the rounding.

6) Two’s complement for the main adder is merged with the
rounding logic to avoid an additional MUX after the main
adder. The two’s complement is propagated to the rounding
logic and forces the roundup of the significand result.

More details to improve the FMA design are presented in the
following sections.

II. TRADITIONAL FLOATING-POINT MULTIPLY-ADDS

A generic algorithm of the floating-point multiply-add is
used for the traditional FMA designs [6], [7]. Many studies
have been reported to improve the FMA design. One-way align-
ment with the addend significand is applied to perform it in par-
allel with the multiplier [6] – [8]. Variations of Booth encodings

and reduction trees are introduced to reduce the number of par-
tial products of the multiplier [10] – [12]. Also, LZA is applied
to normalize the significand earlier by predicting the shift
amount in parallel with the main adder [6] – [9]. Rounding logic
is performed in parallel with the main adder to reduce the la-
tency [8]. Finally, the FMAs are split into 4 – 8 cycles and pipe-
lined to improve the performance [6] – [8]. The proposed FMA
not only combines the optimizations previously introduced, but
also applies further optimizations to speed up and support
denormal numbers.

III. ENHANCED FLOATING-POINT MULTIPLY-ADD

In this section, the optimization techniques are described to
achieve the 4-cycle FMA with full denormal support. Fig. 1
shows a 64-bit unit of the proposed FMA. Three 64-bit floating-
point numbers are formatted into either of one double precision
or two single precision values. They consist of sign, exponent
and significand bits – A = (sA, eA, fA), B = (sB, eB, fB), and C =
(sC, eC, fC). The first cycle contains logic for the exponent dif-
ference, alignment, Booth encoding, and the first part of the
multiply array. The second cycle contains the rest of the multi-
ply array, main adder, incrementor and LZA logic. The normal-
ization and rounding are performed in the third cycle, and
fourth cycle contains the last MUX and bypass/writeback logic.

The proposed FMA performs the one-way significand align-
ment shift with the addend significand based on the exponent
difference. Simultaneously, the multiplier is performed with the
other two significands. The aligned addend significand is
merged with the multiply array to reduce the latency. The sum
and carry values from the multiply array are passed to the main
adder and incrementor. The LZA is performed in parallel with
the main adder and it is used for normalization. The normalized
significand is then rounded and passed to the last MUX to de-
termine the special cases and precisions.

A. Exponent Difference and Alignment

The first cycle begins with the exponent difference logic to
determine the significand alignment shift amount as shown in
Fig. 2. Exponent difference is implemented by subtracting eC

Booth

cyc1

B

cyc2

C

MUL Array

A

Exp Diff

cyc3

J-bit Corr.

2:1

MUL Array+ 1

+

Align

2:1

LZA

LZA
Sticky,

All-ones
Detect Normalize

3x, 5x, 7x

+ 1

Round

cyc4

2:1

upper_sig lower_sig

upper_sig lower_sig

2:1sgl/dbl

fma_result

2:1 sgl/dbl

J-bit Detect

Sticky

Exp Adjust

Sign Logic

Sign Logic
Exp Adjust

+1

round_up +1

fma_sig

fma_exp

fma_sign

lza

sticky

eC, fCeCeA eBsCsA sB fA fB fBfA

exp_diff

exp

norm_sig

carrysum

sign sig_comp

adj_exp

inc

inv

Fig. 1. Proposed Floating-Point Multiply-Add

exp_diff [1:0]
Level 1 Shift

Alignment

eA[10:0]

eB[10:0]

eC[10:0]

exp_diff [3:2]
Level 2 Shift

exp_diff [5:4]
Level 3 Shift

exp_diff [7:6]
Level 4 Shift

Select / Invert

eA[1:0]

eB[1:0]

eC[1:0]

+

*adj_bias = dbl: 0x3C7, sgl: 0x64
*adj_bias–1 = dbl: 0x3C6, sgl: 0x63

–

bigdiff,
exp_comp

eM

3:
2 +

2:
1

1

denormalC

2:
1

denormalAB

*adj_bias

*adj_bias–1

adj_bias[1:0]

Fig. 2. Exponent Difference Logic

from the exponent of the product eM. The eM is computed by
adding eA and eB, then subtracting the bias, which is 0x3ff for
double and 0x7f for single precision, respectively. Since the ad-
dend significand is right shifted in one direction, it needs to be
placed leftmost of the alignment bit range. To correct the gap
between the addend and product significands, the bias is ad-
justed by subtracting 56 for double and 27 for single precision,
respectively. The adjusted bias is subtracted by one if either of
the two operands to the multiplier is denormal to handle the 1-
bit denormal bias. Likewise, the eC is adjusted to one if it is
denormal. Also, the exp_comp is determined by the MSB of the
exponent difference, which means the eM is larger than eC.

𝑒ெ = 𝑒 + 𝑒 − 𝑎𝑑𝑗_𝑏𝑖𝑎𝑠
𝑒𝑥𝑝_𝑑𝑖𝑓𝑓 = 𝑒ெ − 𝑒

 (2)

 𝑒𝑥𝑝_𝑐𝑜𝑚𝑝 = ቄ
1
0

𝑖𝑓 𝑒ெ > 𝑒

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3)

The exponent difference is computed in four levels with 2 bits
in each level – 1st level [1:0], 2nd level [3:2], 3rd level [5:4], and
4th level [7:6]. Those 2 bits in each level represent the shift
amount of the significand alignment. A 2-bit exponent differ-
ence for the first level exponent difference is performed sepa-
rately so that the first level significand alignment starts earlier

before the entire exponent difference is completed. Also, bigdiff
is detected, which means the exponent difference is large
enough and all the significand bits are shifted out. In this case,
all the smaller significand bits are shifted out and the sticky bit
is set.

𝑏𝑖𝑔𝑑𝑖𝑓𝑓 = ቄ
1
0

𝑖𝑓 𝑒𝑥𝑝_𝑑𝑖𝑓𝑓 ≤ 0 𝑜𝑟 𝑒𝑥𝑝_𝑑𝑖𝑓𝑓 ≥ 𝑚𝑎𝑥𝑑𝑖𝑓𝑓
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4)

where maxdiff is 192 for double and 128 for single precision,
respectively.

The J-bit is an implicit one for the normal numbers. To han-
dle denormal numbers, however, the J-bit needs to be treated as
zero. The J-bit is determined by checking if the exponent is non-
zero.

 𝐽𝑏𝑖𝑡 = ቄ
1
0

𝑖𝑓 𝑒𝑥𝑝 ≠ 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5)

The J-bit of the addend significand is detected in parallel with
the first level of the exponent difference so that there is no ad-
ditional delay to handle denormal numbers. Then, it is right
shifted based on the exponent difference. The significand align-
ment consists of four levels of shifters and the last selection
MUX as shown in Fig. 3. In each level, one of three or four shift
amounts is selected based on the exponent difference – 1st level
[0, 1, 2, or 3], 2nd level [0, 4, 8, or 12], 3rd level [0, 16, 32, or
48], and 4th level [0, 64, or 128]. The aligned significand is split
into the upper 55 bits and lower 108 bits. The upper and lower
aligned significands are determined based on bigdiff, exp_comp
and truesub as shown in TABLE I and TABLE II. The truesub
is generated by XORing the three signs and the subtraction op-
eration.

 𝑡𝑟𝑢𝑒𝑠𝑢𝑏 = ቄ
1
0

𝑖𝑓 𝑠 ⊕ 𝑠𝐵 ⊕ 𝑠𝐶 ⊕ 𝑠𝑢𝑏_𝑜𝑝
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6)

The selected upper significand is passed to the incrementor, and
the lower significand is passed to the multiply array to be

4:1exp_diff[1:0]

fC[52:0]

lvl1

lvl2

lvl3

lvl4

4:1exp_diff[3:2]

6:1

1'0'

shr_upper_sig[54:0]

>>1 >>2 >>3

>>4 >>8 >>12

4:1exp_diff[5:4]

>>16 >>32 >>48

3:1exp_diff[7:6]

>>64 >>128

fC[54:0]

upper_sig[54:0]

4:1

lower_sig[107:0]

1'0'

shr_lower_sig[107:0]

sel

exp_comp
bigdiff
truesub

Fig. 3. Alignment Logic

TABLE I
UPPER ALIGNED SIGNIFICAND SELECTION

bigdiff

1

0

0

1

exp_comp

0

-

-

0

1

1

1

1

truesub

0

0

1

1

0

1

upper_sig

fC

aligned fC

aligned & inverted fC

inverted fC

'0

'1

TABLE II
LOWER ALIGNED SIGNIFICAND SELECTION

bigdiff

0

0
1

1

truesub

0

1
0

1

lower_sig

aligned fC

aligned & inverted fC

'0

'1

merged with the significand product, then passed to the main
adder.

There are four cases of alignment as shown in Fig. 4: 1) no
shift is needed if the eC is large enough so that all the product
significand bits are shifted out and sticky bit is set, 2) a small
right shift is needed if the eC is smaller than eM and some of the
fC bits are overlapped with the product bits, and the upper fC bits
are passed to the incrementor and the lower product bits are
passed to the main adder, 3) a medium right shift is needed if
the eC is larger than the eM and the fC bits are completely over-
lapped with the product bits, and all those bits are passed to the
main adder, and 4) a big right shift is needed if the eC is smaller
than the eM and some or all the fC bits are shifted out below the
LSB of the product, and those shifted bits are ORed to deter-
mine the sticky bit. The sticky logic is performed in parallel
with the alignment. The sticky bit is set only in cases 1 and 4 of
the alignment cases described above. In case 4, the sticky bit is
set if the fC is right shifted more than the maximum shift range.

B. Multiplier and J-bit Correction

While the addend significand is aligned, in the first cycle,
the other two significands are passed to the multiplier. Since the
multiplier is on the critical path, the two significands need to be
directly passed to the multiplier with no delay of the J-bit de-
tection. To avoid the delay, the proposed FMA assumes both J-
bits are ones, then subtracts one J-bit correction line in the mul-
tiply array, which requires one more partial product line and a
few bits for two’s complement. If the operand A is denormal,
the fB is subtracted, and if the operand B is denormal, the fA is
subtracted, which is called a J-bit correction line. The case that

both operands are denormal is ignored, since it results in a tiny
number with the underflow.

The proposed FMA uses the radix-16 Booth encoding to re-
duce the area and power. The radix-16 Booth encoding pro-
duces about half the partial products compared to the radix-4
Booth encoding (14 vs. 27). The radix-16 Booth encoding,
however, requires the pre-computations to obtain 1x, 2x, …,
and 8x multiples of the significand fB, which needs three adders
in parallel.

 1x = fB
 2x = fB << 1
 3x = 1x + 2x (need an adder)
 4x = fB << 2
 5x = 1x + 4x (need an adder)
 6x = 3x << 1
 7x = 8x – 1x (need an adder)
 8x = fB << 3

The fA is encoded to select the multiples based on the radix-16
Booth encoding [10]. The selected multiples form 14 partial
products, and they are compressed by 6 levels of 3:2 CSA tree.
The J-bit correction line and aligned addend significand are
added to the CSA tree with no additional level of CSA. The 16
partial products are grouped by the number of partial products
that need the same levels of CSA to reduce the number of CSAs.

 3 – 4 partial products (2 levels)
 5 – 6 partial products (3 levels)
 7 – 9 partial products (4 levels)
 10 – 13 partial products (5 levels)
 14 – 16 partial products (6 levels)

Modified 4:2 CSAs with optimal interconnections are used for
a faster partial product reduction. While the 4:2 CSA is imple-
mented with back-to-back 3:2 CSAs, it takes 3 XOR delay by
connecting the sum of the first 3:2 CSA to the second XOR in
the second 3:2 CSA [11]. Sum and carry from the CSA tree are
passed to the main adder. For the timing balance, the first four
levels of CSAs are performed in the first cycle, and the last two
levels of CSAs are performed in the second cycle.

C. Main adder and Incrementor

The significand sum and carry from the multiplier are
passed to the main adder. The main adder computes the sum of
the two significands for a set of double precision, or two sets of
single precision as shown in Fig. 5. Also, the upper significand
from the alignment is passed to the incrementor. The incre-
mentor adds one to the upper significand only if the main adder
produces carry-out. The result of the main adder and incre-
mentor needs to be two’s complemented if it is positive. On the
other hand, the result of the main adder and incrementor needs
to be inverted if it is negative.

𝑋 − 𝑌 = 𝑋 + 𝑌ത + 1 (𝑋 > 𝑌)

𝑌 − 𝑋 = 𝑋 + 𝑌തതതതതതതതത (𝑋 < 𝑌)
 (7)

dbl[52:0], sgl[23:0]fC

fA × fB dbl[105:0], sgl[47:0]

1. No shift

exp_diff ≤ 0

dbl[52:0], sgl[23:0]fC

2. Small right shift

dbl[105:0], sgl[47:0]fA × fB

Increment + 1 Multiplier

dbl[52:0], sgl[23:0]fC

dbl[105:0], sgl[47:0]fA × fB

Multiplier

3. Medium right shift

*adj < exp_diff ≤ *max

Rshift

Rshift

dbl[52:0], sgl[23:0]fC

dbl[105:0], sgl[47:0]fA × fB

Multiplier

4. Big right shift

exp_diff > *max

Rshift

Sticky

OR

...

bigdiff zero out and set sticky

0 < exp_diff ≤ *adj

OOO J

J

OL J

J

J

JO

O J

J

*adj = 56 (dbl), 27 (sgl)
*max = 109 (dbl), 51 (sgl)

Fig. 4. Four Alignment Cases

Adding one for the two’s complement is merged with the
rounding logic to speed up the critical path – the details will be
described in the rounding section. Inversion can be detected by
checking the carry-out of the incrementor, which needs a delay
of the incrementor to be completed. To avoid the delay, it is
detected by checking if the upper significand bits are all ones,
incremented, and truesub. The inverted result of the main adder
and incrementor is re-organized based on the precision, then
passed to the third cycle for the normalization and rounding.

D. Modified Leading Zero Anticipation

The result of the main adder needs to be normalized. To
speed up the normalization, the LZA is performed in parallel
with the main adder. The LZA takes sum and carry from the
multiply array and generates f vectors for both the cases that the
result is positive and negative, then one of them is selected
based on the inversion, which is described in the main adder
section.

𝑠𝑢𝑚 = {𝑠 , 𝑠ିଵ, … , 𝑠}

𝑐𝑎𝑟𝑟𝑦 = {𝑐, 𝑐ିଵ, … , 𝑐}
𝑔 = 𝑠 ˄ 𝑐

𝑧 = 𝑠 ˅ 𝑐

𝑓௦

= (𝑔 ˅ 𝑧) ˄ 𝑧పିଵതതതതത

𝑓

= (𝑔 ˅ 𝑧) ˄ 𝑔పିଵതതതതത

 (8)

The basic equations are same as the traditional LZA [12]. The
LZA is modified to handle the underflow that occurs when the

exponent becomes negative after the normalization. The modi-
fied LZA stops the normalization shift by masking the f vectors
if the exponent is less than the normalization shift amount. The
mask vector is generated in four levels based on the exponent –
1st level [0, 64, or 128], 2nd level [0, 16, 32, or 48], 3rd level [0,
4, 8, or 12], and 4th level [0, 1, 2, or 3].

𝑚௩ଵ = 𝑚
ସ𝑚ସ

ସ𝑚ଵଶ଼
ସ

𝑚௩ଶ = 𝑚
ଵ𝑚ଵ

ଵ𝑚ଷଶ
ଵ𝑚ସ଼

ଵ

𝑚௩ଷ = 𝑚
ସ𝑚ସ

ସ𝑚଼
ସ𝑚ଵଶ

ସ𝑚
ସ𝑚ସ

ସ … 𝑚଼
ସ𝑚ଵଶ

ସ

𝑚௩ସ = 𝑚𝑚ଵ𝑚ଶ𝑚ଷ𝑚𝑚ଵ𝑚ଶ𝑚ଷ … 𝑚ଶ𝑚ଷ
𝑚 = 𝑚௩ଵ ˄ 𝑚௩ଶ ˄ 𝑚௩ଷ ˄ 𝑚௩ସ ˄ (𝑒𝑥𝑝 < 128)

 (9)

where mk
n is set if the exponent is less than or equal to k and

repeated n times. In each level, two bits of the exponent are used
to generate the mask bits – 1st level [7:6], 2nd level [5:4], 3rd
level [3:2], and 4th level [1:0]. The f vectors are ORed with the
mask vector m and it is used to count the leading zeros. The
LZA consists of four levels, which is same as the normalization.
In each level, the LZA vector is split into four chunks and the
bits in each chunk are ORed to search the ones. Then, one of
the four chunks with the first one from the MSB is selected to
determine the shift amount. The levels of the LZA are orga-
nized from coarse to fine – 1st level 64 bits, 2nd level 16 bits, 3rd
level 4 bits, and 4th level 1 bit per chunk.

E. Normalization, Sticky, and All-ones Detection

The result from the main adder and incrementor is passed to
the normalization logic in the third cycle. The normalization
logic consists of four levels of shifters as shown in Fig. 6. In
each level, one of three or four shift amount is selected based
on the LZA result – 1st level [0, 64 or 128], 2nd level [0, 16, 32
or 48], 3rd level [0, 4, 8 or 12], and 4th level [0, 1, 2 or 3]. Since
the LZA may have a 1-bit error, a 1-bit right shift is needed,
which is called post-normalization. It is detected in parallel with
the last level of the LZA so that there is no additional delay.

𝑝𝑜𝑠𝑡_𝑛𝑜𝑟𝑚 =

⎩
⎨

⎧
𝑛𝑜𝑟𝑚_𝑠𝑖𝑔௩ଷ[𝑀𝑆𝐵] 𝑖𝑓 𝑙𝑧𝑎௩ସ = 0

𝑛𝑜𝑟𝑚_𝑠𝑖𝑔௩ଷ[𝑀𝑆𝐵 − 1] 𝑖𝑓 𝑙𝑧𝑎௩ସ = 1

𝑛𝑜𝑟𝑚_𝑠𝑖𝑔௩ଷ[𝑀𝑆𝐵 − 2] 𝑖𝑓 𝑙𝑧𝑎௩ସ = 2

𝑛𝑜𝑟𝑚_𝑠𝑖𝑔௩ଷ[𝑀𝑆𝐵 − 3] 𝑖𝑓 𝑙𝑧𝑎௩ସ = 3

 (10)

The normalization requires an exponent adjustment by sub-
tracting the shift amount, and it causes underflow if the expo-
nent becomes less than zero after the adjustment. In this case,
the denormalization shifter is needed to recover the negative
exponent to zero, which requires additional delay. To avoid the
extra process, the modified LZA stops the normalization if the
exponent is less than the shift amount so that the denormaliza-
tion is unnecessary. Also, underflow is detected if the J-bit after
normalization is zero, which means a denormal significand re-
sult, and the exponent is set to zero.

Sticky and all-ones detection is performed in parallel with
the normalization to speed up the rounding logic. The sticky bit
in each level of the normalization is set by ORing the bits under
the guard bit. The sticky bits from the four levels of the normal-

s[107:0]

c[107:58] c[56:0]

sgl: 0
dbl: c[57]

sum

carry

u[54:0]

2:1 z[107:51]2:1 z[49:0]

2:12:1

upper

*inv

[107:0][162:108]dbl

sgl [49:0][136:87] 0...0

inc inc

+ 1 +

z

inc[54:0]

2:1

2:1

sum_sig[162:0]

sgl/dbl

*inv *inv

+ 1

sgl

* 1

0

* 0

o o

*inv = upper allones & inc & truesub

Upper: Incrementor Lower: Main Adder

0...00...0

inc[25:0]

[162:137] [75:50]

Fig. 5. Main Adder and Incrementor

ization and the sticky bit from the alignment are ORed to gen-
erate the final sticky bit. Likewise, all-ones in each level is set
by ANDing all the bits under the LSB. The final all-ones is gen-
erated by ANDing the all-ones from the four levels of normali-
zation. The sticky and all-ones are used in the rounding logic.

F. Rounding

The normalized significand is passed to the rounding logic.
The regular rounding is determined by the rounding mode,
LSB, guard, sticky and sign bit as described in [13]. The round-
ing modes are simplified by merging round to +infinity and
round to –infinity. Also, round to zero can be omitted by using
AOI MUX.

𝑟𝑜𝑢𝑛𝑑 𝑡𝑜 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 = ൜
𝑟𝑜𝑢𝑛𝑑 𝑡𝑜 + 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦

𝑟𝑜𝑢𝑛𝑑 𝑡𝑜 − 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦

𝑖𝑓 𝑠𝑖𝑔𝑛 = 0

𝑖𝑓 𝑠𝑖𝑔𝑛 = 1
 (11)

 𝑟𝑜𝑢𝑛𝑑_𝑢𝑝 = ൜
𝐺 ˄ (𝐿 ˅ 𝑆)
𝐺 ˅ 𝑆

𝑖𝑓 𝑟𝑜𝑢𝑛𝑑 𝑡𝑜 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑒𝑣𝑒𝑛

𝑖𝑓 𝑟𝑜𝑢𝑛𝑑 𝑡𝑜 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦
(12)

where L is the LSB, G is guard bit, and S is sticky bit. As men-
tioned in the main adder section, the two’s complement is
merged with the rounding logic. The two’s complement is prop-

agated only if all the bits under the LSB are ones, which is de-
tected in parallel with the normalization. The propagated two’s
complement forces the roundup. Thus, the normalized signifi-
cand is rounded by either the regular roundup or the forced
roundup by two’s complement.

The rounded significand needs to be shifted right by one bit
if the significand overflow occurs after the rounding. Such a
case occurs only if the significand bits are all ones and it is
rounded up, which is detected in parallel with the normaliza-
tion.

 𝑜𝑣_𝑟𝑛𝑑𝑢𝑝 = 𝑎𝑙𝑙𝑜𝑛𝑒𝑠 ˄ 𝑟𝑜𝑢𝑛𝑑_𝑢𝑝 (13)

If ov_rndup is detected, significand becomes zero and the ex-
ponent is adjusted accordingly, which eliminates the re-normal-
ization after the rounding. The rounded significand is passed to
the last MUX in the fourth cycle to determine precision and
special cases, then passed to the bypass and writeback.

G. Exponent and Sign Logic

The exponent logic computes the exponent of the FMA as
shown in Fig. 7. It computes eM and eC, as described in the ex-
ponent difference section, and selects one of them based on the

lvl2

lvl3

lvl4

4:1lza_lvl2

4:1lza_lvl3

2:1
post_norm

>>1
post

4:1

norm_sig[52:0]

<<16 <<32 <<48

<<4 <<8 <<12

<<1 <<2 <<3

lza_lvl1

sum_sig[162:0]

3:1

lvl1
<<64 <<128

lza_lvl4 4:1

[53:50]

Fig. 6. Normalization Logic

eA eB

2:1 exp_comp

–

LZA

+1 / +2

fma_exp

cyc1

cyc2

cyc3

cyc4

lza_exp_adj

adj_exp

exp

post_norm, ov_rndup

2:1

eC 1

denormalC

*adj_bias = dbl: 0x3C7, sgl: 0x64
*adj_bias–1 = dbl: 0x3C6, sgl: 0x63

+

3:2

2:1 denormalAB

*adj_bias *adj_bias–1

eM

Fig. 7. Exponent Logic

exp_comp. The selected exponent is adjusted by subtracting the
normalization shift amount from LZA. Then, it is adjusted again
by adding one or two based on the post_norm and ov_rndup,
which is described in the normalization section and rounding
section, respectively.

𝑓𝑚𝑎_𝑒𝑥𝑝 = ቐ

𝑎𝑑𝑗_𝑒𝑥𝑝 + 2 𝑖𝑓 𝑝𝑜𝑠𝑡_𝑛𝑜𝑟𝑚 ˄ 𝑜𝑣_𝑟𝑛𝑑𝑢𝑝

𝑎𝑑𝑗_𝑒𝑥𝑝 + 1 𝑖𝑓 𝑝𝑜𝑠𝑡_𝑛𝑜𝑟𝑚 ⊕ 𝑜𝑣_𝑟𝑛𝑑𝑢𝑝
𝑎𝑑𝑗_𝑒𝑥𝑝 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (14)

The sign logic is performed in the first and third cycles
based on the three signs and comparison result. The sign of the
product sM and effective sign of C sCeff is determined in the first
cycle.

𝑠ெ = 𝑠 ⊕ 𝑠

𝑠 = 𝑠 ⊕ 𝑠𝑢𝑏_𝑜𝑝
 (15)

The sign of the FMA is determined in the third cycle, since it
requires to check if the result is inverted, which is described in
main adder section. The sign result is set to negative if one of
the following four cases, and set to positive, otherwise.

 sM = 1 and sCeff = 1
 sM = 1 and not inverted
 sCeff = 1 and inverted
 sM ⊕ sCeff = 1 and round to –infinity

IV. RESULTS

In this section, the latency and area comparison between the
traditional and proposed FMA designs are described. Since the
latency and area vary depending on the process technology,
synthesis, placement, and routing, they are analyzed based on
the logic gate comparisons. The latency is estimated by the gate
levels, where the unit gate delays 3 – 4 FO4 inverters depending
on the complexities. The area is estimated by the gate count as-
suming a full adder is composed of 6 gates. TABLE III and

TABLE IV show the latency and area comparisons for double
precision. The proposed design is compared with two tradi-
tional designs [7], [8], that are the most well-known FMA de-
signs. As described in the previous sections, the proposed FMA
applies the radix-16 Booth encoding, which requires pre-com-
putations, but produces a lot fewer partial products. Consider-
ing the placement and routing benefits, the radix-16 Booth en-
coding results in about the same latency with much less area
compared to the radix-4 Booth encoding. The aligned signifi-
cand is inserted into the CSA tree, which eliminates the CSAs
at the end of the multiply array. Also, the incrementor for the
two’s complement after the main adder is merged with the
rounding logic. Additionally, the sticky and all-ones detection
is performed in parallel with the normalization so that the in-
crementor for the rounding is performed right after the normal-
ization. All the extra logic gates for denormal support are com-
pletely merged or performed in parallel with the other logic to
avoid the additional delay. The J-bit detection for the addend is
detected in parallel with the first level of the exponent differ-
ence. Since the other two operands need to be directly passed
to the multiplier, J-bits are not detected. Instead, a J-bit correc-
tion line is added into the CSA tree, which is merged with the
existing CSAs with no additional delay. Also, the 1-bit denor-
mal bias for the denormal inputs are handled in the exponent
difference logic by adjusting the bias. Although the modified
LZA needs additional OR gates for masking, they are not tim-
ing critical. As a result, the proposed FMA reduces about 10 –
20% of the latency and about 10 – 30% of the area over the
traditional FMAs [7], [8]. Moreover, the proposed FMA fully
supports denormal numbers with no additional delay, which
eliminates the additional cycle delays of the microcode assist
handler for denormal numbers.

V. CONCLUSION

An enhanced FMA design for the Intel E-Core processor [2]
is presented. FMA is one of the most frequently used operations,
so improving FMA design will contribute to the next generation
floating-point unit development. The proposed FMA is fully

TABLE III
LATENCY COMPARISON (DOUBLE PRECISION)

Logic PowerPC FMA [7] Lang's FMA [8] Proposed FMA

Multiplier
(gate levels)

Main Adder
(gate levels)

Comment

Normalization
(gate levels)

Rounding
(gate levels)

Total Gate Levels

Radix-4 Booth (6) Radix-4 Booth (6)
Radix-16 Booth &
53-bit Adder (10) Radix-16 Booth and pre-computa-

tions are in parallel.
8 Levels of 3:2 CSAs (12) 8 Levels of 3:2 CSAs (12) 6 Levels of 3:2 CSAs (9)

3:2 CSA (2) 3:2 CSA (2)

106-bit Adder (12) 106-bit Adder (12)

162-bit Shifter (8)

106-bit Incrementor (10)

162-bit Shifter (8) 162-bit Shifter (8)

Rest of 162-bit Adder &
Rounding (13)

53-bit Incrementor (8)

1-bit Shifter (2)

53-bit Incrementor (8)

1-bit Shifter (2)

60 53 47

Part of 162-bit Adder (10)

No Shifter (0)

No 3:2 CSA (0)
Aligned addend is merged with the
multiply array. Two's complement is
merged with the rounding.

No Complement (0)

Sticky and all-ones detection are in
parallel with the normalization.

Post-normalization after the rounding
i s det ect ed i n par al le l w ith t he
rounding.

No Complement (0)

pipelined, executes SSE/AVX operations for scalar/packed
IEEE single and double precisions, and supports all four
rounding modes. Also, the proposed FMA fully supports
denormal numbers with no additional delay so that the
microcode assistance is unnecessary. Several optimization
techniques are applied to achieve the proposed FMA with full
denormal support – one-way alignment, radix-16 Booth
encoding for the multiplier, merged J-bit correction and aligned
significand with the multiply array, modified LZA for masking
the underflow, parallel sticky and all-ones detection with the
normalization, and merged two’s complement with the rounding
logic. As a result, the proposed FMA achieved not only full
denormal support but also about 10 – 20% reduced latency and
about 10 – 30% reduced area over the traditional FMAs.

ACKNOWLEDGEMENT

The authors thank the anonymous reviewers for their con-
structive comments.

REFERENCES
[1] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2019, IEEE,

2019.
[2] How 13th Gen Intel® Core™ Processors Work, https://www.in-

tel.com/content/www/us/en/gaming/resources/how-hybrid-design-
works.html, Intel Corp., 2022.

[3] E. M. Schwarz, M. Schmookler, S. Dao Trong, “FPU Implementations
with Denormalized Numbers,” IEEE Trans. on Computers, vol.54, no. 7,

pp. 825-836, July 2005.
[4] D. R. Lutz, “Fused multiply-add microarchitecture comprising separate

early-normalizing multiply and add pipelines,” Proc. 20th IEEE Symp.
Computer Arithmetic, pp. 123-128, July 2011.

[5] J. Sohn, D. K. Dean, E. Quintana and W. S. Wong, “Enhanced Floating-
Point Adder with Full Denormal Support,” Proc. 29th IEEE Symp. Com-
puter Arithmetic, pp. 35-42, September 2022.

[6] E. Hokenek, R. Montoye, and P.W. Cook, “Second-Generation RISC
Floating Point with Multiply-Add Fused,” IEEE Journal of Solid-State
Circuits, vol. 25, no. 5, pp. 1207-1213, 1990.

[7] S. D. Trong, M. Schmookler, E. M. Schwarz, and M. Kroener, “P6 Binary
Floating-Point Unit”, Proc. 18th IEEE Symp. Computer Arithmetic, pp.
77-86, 2007.

[8] T. Lang, J.D. Bruguera, “Floating-Point Multiply-Add-Fused with Re-
duced Latency”, IEEE Trans. on Computers, Vol. 53, No. 8, pp. 988-1003,
August 2004.

[9] M. Schmookler and K. Nowka, “Leading Zero Anticipation and Detection
– A Comparison of Methods”, Proc. 15th IEEE Symp. Computer Arith-
metic, pp. 7-12, 2001.

[10] G. W. Bewick, Fast Multiplication: Algorithms and Implementation, PhD
dissertation, Stanford University, 1994.

[11] V.G. Oklobdzija, D. Villeger, and S.S. Liu, “A Method for Speed Opti-
mized Partial Product Reduction and Generation of Fast Partial Multipli-
ers Using an Algorithmic Approach,” IEEE Trans. on Computers, vol. 45,
no. 3, pp. 294–306, Mar. 1996.

[12] R. M. Jessani and M. Putrino, “Comparison of single- and dual-pass mul-
tiply-add fused floating-point units,” IEEE Trans. on Computers, vol. 47,
no. 9, pp. 927-937, 1998.

[13] G. Even and P.M. Seidel, “A Comparison of Three Rounding Algorithms
for IEEE Floating-Point Multiplication,” IEEE. Trans. on Computers, vol.
49, no. 7, pp. 638-650, July 2000.

TABLE IV
AREA COMPARISON (DOUBLE PRECISION)

Logic PowerPC FMA [7] Lang's FMA [8] Proposed FMA

Multiplier
(gate count)

Main Adder
(gate count)

Comment

LZA & Normalization
(gate count)

Rounding
(gate count)

Total Gate Count

Radix-4 Booth (200) Radix-4 Booth (200)
Radix-16 Booth (400)

53-bit Adder × 3 (1,500)

Radix-16 Booth requi res the pre-
computations. Radix-16 needs 3 level
CSAs with 14 partial products, while
radix-4 needs 4 level CSAs with 27
partial products.

1,500-bit 3:2 CSAs (9,000) 1,500-bit 3:2 CSAs (9,000) 900-bit 3:2 CSAs (5,400)

106-bit 3:2 CSAs (600) 106-bit 3:2 CSAs (600)

106-bit Adder (1,200) 106-bit Adder (1,200)

LZA (2,000)

106-bit Incrementor (400)

162-bit Shifter × 2 (4,800)
162-bit Shifter (2,400)

Sticky & All-ones Detection (200)

Rest of 162-bit Adder × 2 (1,200)
Rounding (1,400)

56-bit Incrementor (200)

1-bit Shifter (100)

56-bit Incrementor (200)

1-bit Shifter (100)

19,000 23,200 16,600

Part of 162-bit Adder × 2 (1,200)

No Shifter (0)

No 3:2 CSA (0)

Aligned addend is merged with the
multiply array. Two's complement is
merged with the rounding.

No Complement (0)

Modified LZA has masking logic to
stop the normalization.

Post-normalization after the rounding
i s det ect ed i n par al le l w ith t he
rounding.

No Complement (0)

Exponent Difference &
Alignment

(gate count)

11-bit Adder × 2 (200) 11-bit Adder × 2 (200) 11-bit Adder × 2 (200)

162-bit Shifter (2,400) 162-bit Shifter (2,400) 162-bit Shifter (2,400)

56-bit Incrementor (200) No Upper Incrementor (0) 56-bit Incrementor (200)

162-bit Shifter (2,400)

Sticky (100) Sticky (100) Sticky (100)

LZA (2,000) Modified LZA (2,400)

